
Winter Precipitation Type from Microwave Radiometers in New York State Mesonet

Profiler Network

BHUPAL SHRESTHA ,a J. WANG,a J. A. BROTZGE,b AND NATHAN BAINa

a New York State Mesonet, University at Albany, State University of New York, Albany, New York
b Kentucky Climate Center, Department of Earth, Environmental, and Atmospheric Sciences, Western Kentucky University,

Bowling Green, Kentucky

(Manuscript received 28 February 2023, in final form 10 May 2023, accepted 22 June 2023)

ABSTRACT: Winter precipitation is a major cause of vehicle accidents, aviation delays, school and business closures, in-
juries through slips and falls, and adverse health impacts such as cardiac arrests and deaths. However, an improved ability
to monitor and predict winter precipitation type (p-type) could significantly reduce and mitigate these adverse impacts.
This study presents and evaluates a modified parcel thickness method to derive p-type from a microwave radiometer
(MWR) every 10 min. The MWR-retrieved p-types from six selected New York State Mesonet (NYSM) profiler network
sites are validated against reference observations from the Meteorological Phenomena Idenfication Near the Ground
(mPING) and Automated Surface Observing System (ASOS). Between the two reference observations, the mPING re-
ports are biased toward snow (SN) and sleet (SLT) and away from rain (RA) and freezing rain (FZR) compared to the
ASOS. The MWR has the best Pierce skill score (PSS) for RA, followed by SN, FZR, and SLT, and consistently overfore-
casts FZR and underforecasts SLT compared to both mPING and ASOS. The MWR p-type retrievals are generally found
to be in better agreement with ASOS than mPING. Continuous thermodynamic profiles and p-type estimates from across
all 17 profiler sites are available at http://www.nysmesonet.org/networks/profiler. Having such thermodynamic information
from across the state can be a valuable resource, with a significant advantage over twice daily NWS radiosondes, for moni-
toring and tracking hazardous winter weather in real time, for accurate forecasting, and for issuing timely warnings and
alerts.

SIGNIFICANCE STATEMENT: Accurate prediction and monitoring of winter precipitation type (p-type) is impor-
tant due to the adverse economic and health impacts posed by winter weather. However, complexities in understanding
and modeling the processes that govern p-type and inadequate observational data limit accurate monitoring and predic-
tion. To address these issues, a ground-based microwave radiometer (MWR) that provides thermodynamic profiles up
to 10 km every 2 min, as deployed at 17 sites in the New York State Mesonet (NYSM) profiler network, can be a valu-
able tool. This study evaluates the accuracy of p-type estimates based on the parcel thickness method from the MWR
data and its implementation to the NYSM real-time operations.
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1. Introduction

Hazardous winter weather conditions posed by freezing
rain, snow, and sleet (ice pellet) present adverse impacts to
schools and businesses, transportation, aviation, utilities, and
communications that directly affect people’s daily lives. Accord-
ing to the USDOT Federal Highway Administration (2014),
over 1300 people are killed and more than 116000 people are in-
jured in vehicle accidents annually in the United States due to
hazardous winter precipitation. The NOAA/National Centers for
Environmental Information estimates that the winter weather
causes approximately $2 billion (U.S. dollars) in damages annu-
ally (NCEI 2022). In addition, the hazardous winter weather
events also lead to injuries by slips, trips, and falls and affect
human health by increasing risk of acute myocardial infarction
and cardiac arrest and sometimes leading to cardiac death
(Bhaskaran et al. 2009; Dahlquist et al. 2016; Ryti et al. 2017).
Therefore, more accurate monitoring and forecasting of winter

precipitation types (rain, snow, freezing rain, and sleet/ice pel-
lets) could help mitigate at least some of these impacts.

Accurate forecasting and monitoring of precipitation type
(p-type) has been a long ongoing challenge (Ralph et al. 2005),
but with limited success (Elmore et al. 2015). Operational fore-
casting models such as the North American Mesoscale Forecast
System (NAM), Rapid Refresh (RAP), High-Resolution Rapid
Refresh (HRRR) and Global Forecast System (GFS) are found
reliable in forecasting snow and rain but have high uncertainties
in forecasting freezing rain and sleet (Reeves et al. 2014; Elmore
et al. 2015). Model uncertainty could be due to 1) insufficient un-
derstanding of microphysical processes that determine surface
p-type (Elmore et al. 2015), and 2) lack of observational data
with high spatiotemporal resolution with which to train numeri-
cal models. It is well known that the vertical profiles of tempera-
ture and moisture above-ground determine the p-type observed
at the surface (Bourgouin 2000; Ahrens and Henson 2018), but
these profile data are not routinely measured, despite their im-
mense need. Though such data are readily available from the
National Weather Service (NWS) radiosonde network (https://
www.weather.gov/upperair/nws_upper), they are only availableCorresponding author: Bhupal Shrestha, bshrestha@albany.edu
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twice daily (0000 and 1200 UTC) and have low spatial coverage
(only three in New York State), and are insufficient to under-
stand highly variable microphysical processes and the resulting
atmospheric state that governs p-type. And while the p-type al-
gorithms have been developed extensively based on radiosonde
profiles (Bourgouin 2000; Reeves et al. 2014; Reeves 2016), the
twice daily radiosonde data are not frequent enough to ade-
quately retrieve and monitor rapidly evolving changes in p-type.
Overall, the low temporal sampling and sparse spatial coverage
of radiosondes limit our ability to monitor the fine-scale micro-
physical and thermodynamic processes that govern p-type, par-
ticularly freezing rain and sleet because of their high variability
in space and time (Elmore et al. 2015).

Recent advances in remote sensing profiling technologies
now provide a plethora of opportunities for monitoring the at-
mosphere at high vertical and temporal resolutions. One such
sensor is the ground-based microwave radiometer (MWR)
that measures vertical profiles of thermodynamic variables au-
tonomously and continuously. The MWR is a significant ad-
vantage over radiosondes as it provides a more cost-effective
means for real-time monitoring of vertical profiles of temper-
ature and moisture up to 10 km AGL every ;2 min. Further-
more, a dense network of MWRs can fill the spatial gaps of
the NWS radiosonde network. To demonstrate the value of a
network of profiling instruments, the New York State Meso-
net (NYSM) developed a profiler network (Shrestha et al.
2021; www.nysmesonet.org/networks/profiler) comprised of
17 stations deployed across New York State (NYS, Fig. 1).
Each site consists of a collocated Vaisala/Leosphere 100S
scanning Doppler lidar and a Radiometrics MP-3000A micro-
wave radiometer. The NYSM profiler network has been fully
operational since 2018, and the data are distributed to re-
searchers and forecasters from across the state and agencies
like NWS and NASA.

The Radiometrics MWR measures downwelling brightness
temperatures in the water vapor and oxygen bands, the 21 K-
band (22–30 GHz) and 14 V-band (51–59 GHz) channels, that

then are converted into profiles of temperature, liquid den-
sity, vapor density, and relative humidity. The conversion pro-
cess uses a radiative transfer model trained by a neural
network; the neural network is derived from multiyear radio-
sonde data from site(s) with similar climatology to the MWR
location (Ware et al. 2003). The MWR provides vertical pro-
files from the surface to 10 km with a vertical resolution of
50–250 m every ;2 min. Given that the MWR retrieval is an
ill-posed problem due to poor neural network performance,
calibration and model uncertainties, the accuracies of the
MWR-retrieved temperature and water vapor density are
highest near the surface and degrade along the height (Shrestha
et al. 2022; Illingworth et al. 2019; Xu et al. 2015; Cimini et al.
2015; Löhnert and Maier 2012). The study by Shrestha et al.
(2022) shows that the cold biases are observed throughout the
MWR-retrieved temperature profiles and can be as high as
68C whereas dry biases are observed in water vapor density pro-
files within the boundary layer (;2 km) and can be as high as
1 g m23 (Note: recent changes to the MWR calibration tech-
nique by Radiometrics to replace biannual liquid nitrogen
calibration have significantly improved cold biases in MWR tem-
perature profiles). Moreover, the accuracy of the MWR retriev-
als is also affected by the precipitation. The thin layer of water
and ice accumulating on top of the MWR antenna radome
affects the incoming microwave energy passing through the
radome leading to high brightness temperature measurements.
Therefore, it is recommended that the off-zenith measurements
(208 elevation) are used during precipitation days, that have min-
imal impact from the precipitation and provide higher accuracy
than zenith measurements (Xu et al. 2014). In general, though
the MWR lacks high resolution vertical details along the profile
due to its coarser resolution, the MWR observations are found
to be robust for retrieving column integrated variables and parcel
thicknesses (Shrestha et al. 2022). Therefore, given the higher
temporal resolution of the MWR data (every ;2 min), the
MWR presents a significant advantage for continuous monitoring
of thermodynamic changes, and yet a relatively little attention
has been given to extending the application of the MWR to re-
trieve and monitor winter p-type. Fortunately, several p-type al-
gorithms have been developed based on the radiosonde profiles
(Derouin 1973; Cantin and Bachand 1993; Ramer 1993; Baldwin
et al. 1994; Bourgouin 2000; Schuur et al. 2012), and these can be
easily applied to the MWR-retrieved profiles.

The main goal of the study is to refine the existing p-type algo-
rithms based on the MWR data, evaluate the MWR-derived
p-types and demonstrate the MWR as a robust instrument for
p-type estimates. The parcel thickness method developed by
Cantin and Bachand (1993) is applied to the MWR data. This
method is particularly selected because of its dependency on
1000–850- and 850–700-hPa thickness layers as predictors for the
p-type. Importantly, this method does not directly depend on
the temperature profile as the MWR-retrieved temperature pro-
file is found to have cold biases (Shrestha et al. 2022). While the
temperature is a key factor that determines the thicknesses of
the parcels, an explicit dependence on the quantitative thresh-
olds for the temperature is avoided with this method as it is the
function of the changes in temperature with height, not the abso-
lute temperature. The MWR-retrieved p-types from six selected

FIG. 1. A map of New York State Mesonet profiler network
(black dots with blue outlines) along with six selected ASOS sites
(red diamonds).
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NYSM profiler network sites are validated against the ground
truth observations from the Meteorological Phenomena Identifi-
cation Near the Ground (mPING) network (Elmore et al. 2014)
and Automated Surface Observing System (ASOS) network
(NOAA 1998) during a multiyear period from 2020 to 2022.
The second goal of the study is to demonstrate the value of the
MWR profiles to monitor and understand the thermodynamic
processes taking place aloft in relation to the observed surface
p-type, which is a much-needed information not available from
the ASOS, mPING or Community Collaborative Rain, Hail and
Snow Network (CoCoRaHS) that are all limited to the surface
p-type reports only.

The paper is organized as follows: Details about the experi-
mental site, methodology, and data are presented in section 2.
The performance of the MWRs in estimating p-type is pre-
sented in section 3, with a wintry-mix case study in section 4.
The real-time application in the NYSM operation is presented in
section 5, followed by the conclusions of the study in section 6.

2. Experimental site, methodology, and data

The MWR provides thermodynamic profiles from the sur-
face to 10 km with vertical resolution of 50 m up to 500 m,
100 m from 500 m to 2 km, and 250 m above 2 km and with
temporal resolution of ;2 min. The data collected from six
NYSM Profiler Network sites (Queens, Stony Brook, Red
Hook, Albany, Jordan, and Buffalo; Fig. 1) from 2020 to 2022
(only November–April months considered) are used in this
study. These six profiler network sites were strictly selected
due to the availability of p-type observations from both
mPING and ASOS in the vicinity. The six sites represent
three distinct regions across New York; Queens and Stony
Brook represent downstate New York City and the coastal re-
gion, Red Hook and Albany represent the mid-Hudson valley
central region, and Jordan and Buffalo represent the upstate
western region. Because off-zenith (208 elevation in north and
south directions) retrievals are more accurate than zenith re-
trievals from the MWR during precipitation days (Xu et al.
2014), the profiles from the average of two off-zenith retriev-
als are used in this study and the data are further averaged
over 10-min periods for the comparison purpose. Using the
barometric formula, the MWR-retrieved height and tempera-
ture profiles are converted to pressure levels and a cubic
spline interpolation is applied to obtain the data at 10-hPa reso-
lution so that the data are available at mandatory pressure lev-
els such as 1000, 850, and 700 hPa as defined by the American
Meteorological Society (2014). Then, the parcel thickness method
developed by Cantin and Bachand (1993) is applied to determine
the parcel thickness layers using the MWR-retrieved profiles and
diagnose p-type.

The parcel thickness method developed by Cantin and
Bachand (1993) utilizes thickness of the 1000–700-hPa layer
as the snow/rain line, which is further divided into two predic-
tor layers as 1000–850 and 850–700 hPa to determine p-type.
Since the mean temperature of the layer determines the thickness
of that corresponding layer, the basic assumption of this method
is that upper layer thickness of 850–700 hPa . 1540 m and lower
layer thickness of 1000–850 hPa . 1310 m indicate a total

thickness layer above 08C and vice versa. For each upper layer
thickness below and above 1540 m, the lower layer is further di-
vided into: ,1290 m, 1290–1310 m, and .1310 m to differenti-
ate p-type [rain (RA), snow (SN), freezing rain (FZR), and
sleet (SLT)]. For example, FZR is reported when thickness
of 850–700 hPa . 1540 m and 1000–850-hPa thickness of
1290–1310 m. The lower layer thickness . 1310 m always
yields RA. As this method was initially developed and used in
southeastern Canada, the specific criteria threshold values as
originally defined likely vary from those applicable in New York
(Bourgouin 2000). Therefore, slightly different criteria values are
developed based on our exploratory data analysis. Particularly,
the lower layer thicknesses are increased by 10 m due to the ob-
served mean bias error of 10 m between the radiosonde and
MWR derived thicknesses (Shrestha et al. 2022). New criteria
for upper layer thickness . 1570 m are added to more precisely
identify FZR and SLT. In addition, some near-surface tempera-
ture threshold criteria are also added to constrain certain p-type
due to the accuracies of theMWR-retrieved temperature profiles
being highest near the surface that degrades along the height
(Shrestha et al. 2022). The detailed outline of the modified parcel
thickness method is shown in Table 1.

The retrieved p-type results from the MWRs are compared
against the ASOS observed p-type. The ASOS (https://www.
weather.gov/asos/) is the primary surface weather observing
network serving the nation’s airports and weather service
offices (NOAA 1998). They provide several surface meteoro-
logical parameters along with p-type. Each station has a pre-
cipitation detection sensor that differentiates between RA,
SN, and FZR (but no sensor to detect SLT). Trained human
observers manually augment ASOS reports to report SLT.
Thus, SLT reporting is entirely dependent on ASOS staff;
some underreporting and misdiagnosis can be expected due
to the extra manual labor required. Similarly, the ASOS is
also known to have some issues in reporting FZR and freez-
ing drizzle automatically (Elmore et al. 2015; Landolt et al.
2019). In addition, the ASOS also has difficulty detecting
p-type during mixed precipitation event or when precipitation
is changing from one type to another, reporting as unknown
precipitation “UP” (Landolt et al. 2019) and requiring manual
augmentation. Therefore, it is found that augmented ASOS
sites are more robust and reliable than nonaugmented sites
that do not report SLT and mixed p-types (Reeves 2016). The
MWR-retrieved p-type results from six NYSM Profiler
sites (Queens, Stony Brook, Red Hook, Albany, Jordan, and
Buffalo) are compared against p-type reports from six ASOS
sites in the vicinity: LaGuardia Airport (LGA), ISLIP
(ISP), Poughkeepsie (POU), Albany County Airport (ALB),
Syracuse (SYR), and Buffalo International Airport (BUF)
(see Fig. 1). Among these six selected ASOS sites in this
study, only POU is a nonaugmented site. The average dis-
tances between the selected NYSM profiler and ASOS sites
are presented in Table 2 and the ASOS data are available
from Iowa State University Mesonet at https://mesonet.
agron.iastate.edu/request/download.phtml?network=NY_
ASOS.

Similarly, the MWR-retrieved p-type results are also com-
pared against the mPING network (Elmore et al. 2014,
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https://mping.ou.edu/). The mPING program archives p-type
data that are reported by the public (referred to as “citizen
scientists”) from their locations using their cell phones or
computers. Therefore, the mPING datasets contain high spa-
tial and temporal observations of p-type from across the
United States (Reeves 2016). However, the mPING reports
have two significant shortcomings: 1) quality control is diffi-
cult as the reports are made by the general public, some of
whom may not be trained to identify p-type correctly and
may not follow consistent guidelines for reporting, and 2) re-
ports are mostly limited to daytime observations in urban
areas; overnight and rural area reports are less common. Nev-
ertheless, the mPING reports are reasonably robust for com-
parison and validation purposes (Elmore et al. 2014). The
mPING reports include 10 different p-types: snow and/or
graupel, rain, drizzle, freezing drizzle, ice pellets/sleet, freez-
ing rain, mixed rain and snow, mixed ice pellets and snow,
mixed rain and ice pellets, and mixed freezing rain and ice
pellets. The highest reported p-type category for each 10-min

period within a 15-km radius of NYSM site is used for com-
parison with the MWR-retrieved p-type. The mPING obser-
vations within 15 km and 10 min are selected because the
mPING reports of FZR and SLT agree with the ASOS at
least 50% of the time with those criteria and that agreement
decreases with increased distance and time from the ASOS
observations (Elmore et al. 2014; Reeves 2016), which is basi-
cally due to high variability of FZR and SLT occurrence in
space and time. Though the agreement increases with de-
crease in time and distance, the availability of mPING p-type
reports is limited for the comparison.

Since mixed p-types are commonly reported by both the
ASOS and mPING as well as those retrieved from the MWR,
it is necessary to collapse the mixed p-type categories into one
of the four major p-types (SN, RA, FZR, and SLT) for direct
comparison. A match is considered when the MWR p-type
agrees with or is in a mix with ASOS/mPING reports (exam-
ple: FZR versus FZR/RA 5 FZR versus FZR). The mixed
p-types are collapsed into one of the four major p-types with

TABLE 1. A modified version of partial thickness method.

Thickness (m)

p-type850–700 hPa (H1) 1000–850 hPa (H2)

,1540 ,1300 SN
1300–1320 SLT/SN
.1320 RA

$1540 ,1300 SN if H1 # 1545
SLT/SN if H1 . 1545

1300–1320 FZR/RA
.1320 RA

1570–1595 .1295 FZR/RA
1595–1605 FZR/SLT
$1605 $1310 FZR

,1310 SLT

Additional conditions
If retrieved p-type 5 SN and surface temperature (Tsurface) . 08C, change p-type to RA/SN
If H2 . 1335 m and Tsurface . 218C, p-type is RA
If all temperature (T) # 238C throughout MWR profile (10 km), p-type is SN
If Tsurface . 78C, p-type is RA
Within first near-surface 50 hPa, if all T . 08C and Tmax . 28C, p-type is RA
If retrieveda p-type 5 FZR or FZR/SLT and Tsurface , 238C and H2 , 1320 m,

change p-type to
SLT

If retrievedb p-type 5 SLT/SN or FZR/RA and Tsurface , 218C, change p-type to FZR/SN
If retrievedb p-type 5 RA and Tsurface , 218C, change p-type to FZR/RA
bIf H1 . 1600 m and H2 . 1325 m RA
a Only for those sites with surface pressure (Ps)’ 1000 hPa.
b Only for those sites with Ps.. 1000 hPa.

TABLE 2. NYSM and ASOS site information.

NYSM site Location (lat, lon) ASOS site Location (lat, lon) Distance (km)

Queens 40.73438, 273.81598 LGA 40.77948, 273.88038 7
Stony Brook 40.91968, 273.13338 ISP 40.79398, 273.10178 14
Red Hook 41.99988, 273.88418 POU 41.62668, 273.88428 41
Albany 42.75168, 273.81138 ALB 42.75768, 273.80368 1
Jordan 43.06878, 276.76998 SYR 43.11128, 276.10638 54
Buffalo 42.99368, 278.79468 BUF 42.94088, 278.73588 8
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the priority (greatest severity) order of FZR . SN . RA .

SLT (example: FZR/SLT versus FZR/SN 5 FZR versus
FZR; FZR/SLT versus RA/SN 5 FZR versus SN). Though
SLT poses more threat than RA, it is given the lowest priority
because of well-known issues of SLT reports from both
mPING and ASOS (underreporting of SLT by the ASOS and
overreporting of SLT by the mPING: Elmore et al. 2015;
Reeves 2016). Finally, the performance of the MWR is re-
viewed using statistical measures based on a standard 2 3 2
contingency table (Table 3) in terms of probability of detec-
tion, precision, bias, and the Pierce skill score (Wilks 2006).

Based on Table 3, the following parameters are calculated
for each p-type:

1) Probability of detection (POD) 5 TP/(TP 1 FN); perfect
score of 1 Þ perfect forecast

2) Precision 5 TP/(TP 1 FP); perfect score of 1 Þ perfect
forecast

3) Bias 5 (TP 1 FP)/(TP 1 FN); bias . 1 (overforecast),
bias, 1 (underforecast), perfect score of 15 perfect forecast

4) Pierce skill score (PSS) 5 POD 2 POFD, where proba-
bility of false detection (POFD) 5 FP/(FP 1 TN); perfect
score of 1 5 perfect forecast

3. Validation results and analysis

The accuracy of the MWR-retrieved p-types is validated
and analyzed by comparing p-type reports from two different
reference observations: mPING and ASOS in this section.
Since the mPING observations are reported by the interested
public while the ASOS observations are automated based on
instrumental detection with manual augmentation on SLT re-
ports by trained ASOS staffs, any observer and instrumental
biases can lead to some discrepancies between two reference
observations. Furthermore, the locations of the mPING ob-
servations vary in space and time while the observations from
the ASOS are fixed, both reference observations may have
additional discrepancies between them due to spatial and
temporal variability. Therefore, both reference observations
are compared against each other first to assess their agree-
ments and potential biases in this section.

a. mPING versus ASOS observations

During the selected period of study (November–April of
2020–22), the frequency of p-types as reported by the mPING
and ASOS for the three topographical regions of NYS are
shown in Fig. 2. The highest reported mPING p-type category
for each 10-min period within a 15-km radius of each ASOS
site is used for comparison. As expected, both mPING and
ASOS report RA and SN as the top two p-types across NYS.

The frequency of RA observations in ASOS dataset is consis-
tently higher than that of mPING while the frequency of SN
observations in mPING dataset is comparable or higher than
ASOS reports, consistent to observations across the continen-
tal United States as reported in Reeves (2016). Therefore, it
appears that the mPING citizen scientists are less inclined to
report RA than SN. Regarding the remaining p-types, the
mPING reports are clearly more varied than the ASOS
reports, except for FZR/SN, which is not reported by the
mPING. The other p-types, apart from RA, SN, or its mix
(RA/SN) comprise 10%–12% of mPING reports while just
2%–4% of ASOS reports. On average, the frequency of FZR
or some combination that includes FZR in the mPING
dataset (;3%) is somewhat comparable to that of ASOS
(;2.6%); however, the frequency of SLT or some combina-
tion that includes SLT in the mPING reports (;9%) is con-
siderably higher to that of ASOS reports (;0.7%). Such
discrepancies in SLT reports between the mPING and ASOS
could be either because 1) ASOS detection of SLT is not au-
tomated but rather augmented by the trained observer and
hence, it could be possible at times when the SLT are under-
reported, or 2) the mPING users overreport SLT. Reeves
(2016) reported that mPING users are often confused with
wet SN or FZR and report them as SLT as the study showed
that about 66% of mPING SLT reports were either SN or
FZR. The highest reports of SN in upstate western region and
RA in downstate region in both mPING and ASOS reports
are consistent with the precipitation climatology of the NYS.
Heavy lake-effect snow from the Great Lakes is very common
in upstate western NYS while the warmer Atlantic Ocean
temperature impacts the downstate region leading to more
rain than snow.

The p-type comparison statistics from mPING and ASOS
observations at the six selected sites: LGA, ISP, POU, ALB,
SYR, and BUF are shown in Fig. 3. Considering the ASOS
observations as “truth,” the mPING reports of SN have POD
$ 0.94 and RA has POD $ 0.80 for all the six sites (Fig. 3a).
Similarly, SLT has POD $ 0.86 with the best value of 1 at
LGA and SYR, i.e., no false negatives (misses). Though the
POD for FZR has the best value of 1 at SYR, they are com-
paratively lower than other p-types at remaining sites (0.54 #

POD # 0.83) and are negatively affected by higher misses.
The precision values are much higher for RA and SN ($0.91)
followed by FZR (mostly $0.69) compared to SLT (0.19–0.53,
Fig. 3b). In other words, mPING has the highest false alarm
(false positive) rate for SLT among four p-types. As a result,
very high bias values of 1.79–5.20 in the mPING SLT reports
are observed (Fig. 3c), which is consistent with significantly
higher observations of SLT from the mPING reports compared
to the ASOS as seen in Fig. 2 and with previous studies by
Reeves (2016).

A PSS value of 1 represents perfect forecast with no false
alarms and misses. The mPING has PSS $ 0.80 for all three
p-types: RA, SN, and SLT while FZR has PSS mostly #0.81
(Fig. 3d). Overall, the mPING p-types have PSS mostly above
0.7, suggesting reasonably reliable mPING reports. In sum-
mary, the mPING reports of FZR show the least agreement
with the ASOS due to negative impact by high misses and

TABLE 3. A 2 3 2 confusion matrix of the categorical forecast.

Event forecast

Event observed

Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
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because of the highest false alarms, the SLT reports are rela-
tively better than the FZR.

b. MWR retrievals versus mPING observations

The MWR-retrieved p-types compared against the mPING
observations at the six selected NYSM sites are shown in
Fig. 4. The POD values are found to be the highest for RA
(POD $ 0.95), followed by SN (POD $ 0.85), FZR (mostly
$0.67), and SLT (mostly ,0.50) across NYS (Fig. 4a). The
precision values for SLT and SN are found to be the highest
($0.92) while they are mostly greater than 0.75 for RA and
the lowest for FZR (#0.62, Fig. 4b). Such lower precision val-
ues for FZR are the result of higher false alarms and resulting
overforecasts by the MWR (bias 5 1.5–3.8, Fig. 4c). In con-
trast, the MWR underforecasts SLT (bias 5 0.16–0.7) due to
high misses as represented by low POD values. The overfore-
casting of FZR and underforecasting of SLT by the MWR
could merely be due to 1) the underreporting of FZR and
overreporting of SLT by mPING users as discussed in section 3a,
and 2) p-type collapse scheme used with the priority order of

FZR . SN . RA . SLT (MWR retrievals are biased toward
FZR and away from SLT). Similar to the POD trend, the PSS
values are the highest for RA ($0.89), followed by SN ($0.81),
while they are mostly $0.58 for FZR and mostly #0.5 for SLT
(Fig. 4d). In summary, the MWR provides high reliability in esti-
mating RA, followed by SN, FZR and SLT. The MWR is found
to have higher false alarms for FZR and higher misses for SLT,
compared to the mPING reports.

c. MWR retrievals versus ASOS observations

The MWR retrieved p-types compared against the ASOS
observations at the six selected NYSM sites are shown in
Fig. 5. The POD values for SN and RA are reasonably high
(POD $ 0.95) while for FZR, the POD values tend to de-
crease from 0.88 at Queens (QUEE) to 0.46 at Buffalo
(BUFF) (Fig. 5a). Coincidentally, this decreasing trend ob-
served from QUEE to BUFF matches with their increasing
trend in elevations (QUEE to BUFF, site elevations increase
from 53 to 186 m). The POD values for SLT are very different
from one site to another. The precision values are the highest

FIG. 2. The precipitation type reports from the mPING and ASOS at (a) downstate New
York City region, (b) midstate Hudson Valley region, and (c) upstate western region during
November–April of 2020–22.
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for RA ($0.99), followed by SN ($0.89), SLT (mostly $0.83)
and FZR (0.33–0.73). Similar to the comparison results with
mPING FZR reports (Fig. 4c), the MWR also overforecasts
FZR compared to the ASOS reports; however, the biases are

much lower, #1.58 (Fig. 5c). The MWR severely underfore-
casts SLT at Stony Brook (STON), Jordan (JORD), and
BUFF. The PSS values are nearly identical to the POD values
for all four p-types due to low POFD (Fig. 5d). In summary,

FIG. 3. Comparison of p-type results between mPING (forecasts) and ASOS (observations) in terms of (a) POD,
(b) precision, (c) bias, and (d) PSS.

FIG. 4. Comparison of p-type results between MWR retrievals and mPING reports in terms of (a) POD, (b) precision,
(c) bias, and (d) PSS.
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the MWR provides high reliability in RA, followed by SN,
FZR and SLT, and the MWR is found to have higher false
alarms for FZR and higher misses for SLT compared to
ASOS reports, a similar trend to that observed for MWR-
mPING comparison (Fig. 4); however, the MWR-retrieved p-
types are in better agreement with ASOS than mPING
reports.

4. Case study of wintry mix event

This section presents a case study on the temporal evolu-
tion of p-types during a major winter storm at Albany on
3–4 February 2022 (https://www.weather.gov/btv/Long-Duration-
Snowstorm-and-Mixed-Precipitation-Event-on-3-4-February-2022).
This event was particularly selected because the winter storm
brought a variety of wintry mix of all four major p-types: RA,
SN, FZR, and SLT. A plume of highly anomalous moisture
persisted over the Northeast region of the United States for
about 48 h and the favorable upper-level jet dynamics with
associated upper-level divergence resulted in a prolonged pe-
riod of heavy precipitation during the event. The main high-
light of the event was 121 hours of SLT totaling around 2 in.
at Albany, a region in the mid-Hudson Valley. However, it
was mostly SN across western upstate New York and RA
across downstate and around New York City. This case study
is presented to demonstrate the effectiveness of the MWR in
real-time monitoring of p-types and capturing the transition
of p-type from one to another. The 40 h of p-type observa-
tions from the MWR retrievals at the Albany, nearby ASOS
site (ALB) and mPING (reports from within 15-km radius of
the Albany profiler site) are shown in Fig. 6a. The p-type

data are shown every 10 min when available from each obser-
vation along with the MWR-derived skew T–logp plots for
four different times in Figs. 6b–e.

The MWR-retrieved p-types are in agreement with the
mPING and ASOS reports during the event. It was all RA on
3 February with a shift to FZR toward the end of the day at
2300 UTC. The FZR event lasted about 4 h and transitioned
into SLT starting 0200–0300 UTC until mid-4 February. After
that, SN was observed for the rest of the day. The MWR effec-
tively captures such transition of p-type for 40 h, consistent with
both ASOS andmPING observations. TheMWR-retrieved tem-
perature profile shows the temperature above freezing (.08C) in
a sufficiently deep layer below 750 mb (1 mb 5 1 hPa), leading
to RA at 1200 UTC 3 February (Fig. 6b). But because an upper
inversion layer (900–750 mb) existed and near surface tempera-
ture decreased later in the day, this gave rise to an upper layer
warm nose (900–700 mb) and shallow lower subfreezing layer
below 900 mb with surface temperature of 22.58C, causing
supercooled liquid drops from the upper layer to freeze on
surface contact, resulting in FZR at 0000 UTC 4 February
(Fig. 6c). By 1100 UTC, as the surface temperature decreased
further to 288C, this resulted in a deep subfreezing layer
below 850 mb and the supercooled liquid drops from the up-
per-layer warm nose to freeze into SLT (Fig. 6d). Later by
1800 UTC, the total vertical profile of temperature was below
freezing that gave rise to the SN at the surface (Fig. 6e). This
case study of wintry mix event further validates the MWR-
retrieved p-types with comparable accuracy to the mPING and
ASOS reports and demonstrates its capability in monitoring
high temporal p-type transition. In addition, the MWR ther-
modynamic profiles (skew T–logp plots) allow forecasters to

FIG. 5. Comparison of p-type results between MWR retrievals and ASOS observations in terms of (a) POD, (b) preci-
sion, (c) bias, and (d) PSS.
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monitor the evolution and vertical extent of any upper layer warm
nose and near surface subfreezing layer associated with FZR and
SLT and issue timely warnings of any possible ice storm.

5. Real-time application

The NYSM profiler network data are collected, archived,
and disseminated in real time every 10 min. A time–height
cross section plots of wind, aerosol backscatter, temperature,
liquid density, vapor density and relative humidity are

displayed in real-time and are publicly available at the NYSM
profiler web page: http://www.nysmesonet.org/networks/profiler,
from all 17 profiler sites. In addition, the derived products such
as MWR-retrieved p-types based on section 2 and associated
skew T–logp plots are also displayed at the NYSM profiler web
page and the screenshot of one example is shown in Fig. 7 along
with time–height cross-section plots for MWR-retrieved temper-
ature and relative humidity. All data are updated every 10 min
and can be viewed for the last 24 h from the time of viewing.
These real-time data are used in NWS operations and as in the

FIG. 6. (a) The MWR-retrieved p-types along with ASOS and mPING p-type reports during 3–4 Feb 2022 at Albany,
and skew T–logp plots at (b) 1200 UTC 3 Feb, and at (c) 0000, (d) 1100, and (e) 1800 UTC 4 Feb.
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example shown in Fig. 7, the data were used by the NWSAlbany
WFO to monitor the wintry mix event on 9–11 January 2022.
Therefore, having the continuous thermodynamic and kinematic
profiles, and p-type estimates with its associated skew T–logp
plots every 10 min (a significant advantage over twice daily NWS
radiosonde updates) helps forecasters to monitor the evolution
of winter storm in real time and provides confidence in issuing
timely warnings and alerts.

6. Conclusions

Many operational techniques based on radiosonde profiles
have been developed to determine p-types. However, low
temporal sampling and spatial coverage of the NWS radio-
sonde network data limit our ability to determine p-type in
real-time and to monitor fine-scale microphysical and thermo-
dynamic processes that govern p-type. Because continuous
thermodynamic profiles are available from the MWR every

FIG. 7. Real-time display of MWR-retrieved (a) p-type and its associated skew T–logp plot, (b) temperature (8C), and
(c) relative humidity (%) at Albany for 24 h starting at 2000 LT 8 Jan 2022.
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2 min, this paper presents an application and evaluation of
the MWRs from the NYSM profiler network to accurately re-
trieve p-type. A modified version of the parcel thickness
method is applied to the MWR data to diagnose p-type, and
those results are compared against the reports from the
mPING and ASOS at six selected NYSM profiler network
sites (Queens, Stony Brook, Red Hook, Albany, Jordan, and
Buffalo) during November–April of 2020–22. The mPING
and ASOS data are compared against each other to assess
any discrepancies between them due to observer, instrument,
spatial and temporal variability before comparing them with
the MWR retrievals. Compared to the ASOS reports, the
mPING observers are found to be less inclined to report RA
than SN while they are more inclined to report SLT than
FZR. The mixed p-type reports are normally higher in
mPING than ASOS observations. The mPING SLT has the
lowest precision and relatively high bias values while the
mPING FZR has the lowest POD and PSS values. Overall,
the mPING ptypes have PSS mostly . 0.7 across the se-
lected six sites, demonstrating its reasonable accuracy com-
pared to the ASOS reports.

When compared against the mPING reports, the MWR has
the best PSS for RA (PSS $ 0.89) followed by SN (PSS $

0.81), FZR (mostly PSS $ 0.58) and SLT (mostly PSS #

0.49). Similarly, when compared against the ASOS reports,
the MWR also has the best PSS for RA (PSS $ 0.96), fol-
lowed by SN (PSS $ 0.91), FZR (mostly PSS $ 0.73) and
SLT (mostly PSS$ 048), which are comparatively better than
compared to mPING. Relative to both mPING and ASOS re-
ports, the MWR overforecasts FZR and underforecasts SLT
which could be due to underreporting of FZR and overreport-
ing of SLT in the mPING observations, underreporting of
SLT and known issues with FZR in the ASOS observations
and the p-type collapse scheme used that is biased toward
FZR and away from SLT. Though some known discrepancies
in FZR and SLT reports from both the mPING and ASOS
datasets may have impacted the MWR comparison results,
those results can be further improved with the refinement of
the parcel thickness method or the application of robust and
explicit temperature dependent area method that have better
performance than other available techniques (Bourgouin 2000),
a part of future work. Overall, the MWR provides high accu-
racy in estimating RA and SN and a reasonable accuracy in esti-
mating FZR and SLT that is still considerably better than the
results from the numerical models such as the RAP, NAM, and
GFS (Elmore et al. 2015).

The continuous thermodynamic profiles from the MWR
(and wind profiles from the Doppler lidar) and p-type esti-
mates with its associated skew T–logp plot every 10 min
(http://www.nysmesonet.org/networks/profiler) from all 17 Profiler
sites provide significant advantage over twice daily NWS radio-
sondes in monitoring the evolution of winter storm in real-time
and better understanding the favorable conditions associated with
certain p-types, especially FZR and SLT that pose hazardous
winter weather condition. Such information allows the weather
forecasters to issue timely and accurate warnings and alerts. In ad-
dition, p-types estimated from the NYSM surface network (Wang
et al. 2021, http://www.nysmesonet.org/weather/winter) are also

available to provide better spatial coverage across the NYS (126
sites, spaced an average of 30 km apart). Overall, the NYSM sup-
ports real-time monitoring of high-impact winter weather in a re-
gional scale; provides the high spatial and temporal resolution
data necessary to initialize and validate numerical models; and po-
tentially aid in numerical model development and forecasting.
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